Monads on Dagger Categories
نویسندگان
چکیده
The theory of monads on categories equipped with a dagger (a contravariant identity-on-objects involutive endofunctor) works best when all structure respects the dagger: the monad and adjunctions should preserve the dagger, and the monad and its algebras should satisfy the so-called Frobenius law. Then any monad resolves as an adjunction, with extremal solutions given by the categories of Kleisli and FrobeniusEilenberg-Moore algebras, which again have a dagger. We characterize the Frobenius law as a coherence property between dagger and closure, and characterize strong such monads as being induced by Frobenius monoids.
منابع مشابه
Reversible monadic computing
We extend categorical semantics of monadic programming to reversible computing, by considering monoidal closed dagger categories: the dagger gives reversibility, whereas closure gives higher-order expressivity. We demonstrate that Frobenius monads model the appropriate notion of coherence between the dagger and closure by reinforcing Cayley’s theorem; by proving that effectful computations (Kle...
متن کاملDagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract)
Dagger compact closed categories were recently introduced by Abramsky and Coecke, under the name “strongly compact closed categories”, as an axiomatic framework for quantum mechanics. We present a graphical language for dagger compact closed categories, and sketch a proof of its completeness for equational reasoning. We give a general construction, the CPM construction, which associates to each...
متن کاملCategorical Models for Quantum Computing
Monoidal dagger compact categories were proposed by Samson Abramsky and Bob Coecke in [1] as a mathematical model for quantum theory. This is an alternative to, and a generalisations of, the Hilbert space model. Together with their colleagues, they have extended this to a versatile framework for quantum computing. Recently, Jamie Vicary has proposed an alternative framework in terms of weak 2-c...
متن کاملAmbiguity and Incomplete Information in Categorical Models of Language
We investigate notions of ambiguity and partial information in categorical distributional models of natural language. Probabilistic ambiguity has previously been studied in [27, 26, 16] using Selinger’s CPM construction. This construction works well for models built upon vector spaces, as has been shown in quantum computational applications. Unfortunately, it doesn’t seem to provide a satisfact...
متن کاملDagger Categories of Tame Relations
Within the context of an involutive monoidal category the notion of a comparison relation cp : X ⊗X → Ω is identified. Instances are equality = on sets, inequality ≤ on posets, orthogonality ⊥ on orthomodular lattices, non-empty intersection on powersets, and inner product 〈− |−〉 on vector or Hilbert spaces. Associated with a collection of such (symmetric) comparison relations a dagger category...
متن کامل